A Converse Theorem for Double Dirichlet Series and Shintani Zeta Functions

نویسندگان

  • NIKOLAOS DIAMANTIS
  • DORIAN GOLDFELD
  • Nikolaos Diamantis
چکیده

The main aim of this paper is to obtain a converse theorem for double Dirichlet series and use it to show that the Shintani zeta functions [13] which arise in the theory of prehomogeneous vector spaces are actually linear combinations of Mellin transforms of metaplectic Eisenstein series on GL(2). The converse theorem we prove will apply to a very general family of double Dirichlet series which we now define.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bhargava Integer Cubes and Weyl Group Multiple Dirichlet Series

We investigate the Shintani zeta functions associated to the prehomogeneous spaces, the example under consideration is the set of 2 × 2 × 2 integer cubes. We show that there are three relative invariants under a certain parabolic group action, they all have arithmetic nature and completely determine the equivalence classes. We show that the associated Shintani zeta function coincides with the A...

متن کامل

A CONVERSE THEOREM FOR DOUBLE DIRICHLET SERIES By NIKOLAOS DIAMANTIS and DORIAN GOLDFELD

We prove that a certain vector valued double Dirichlet series satisfying appropriate functional equations is a Mellin transform of a vector valued metaplectic Eisenstein series. We establish an analogous result for scalar double Dirichlet series of the type studied by Siegel.

متن کامل

Math 254a: Zeta Functions and L-series

Theorem 1.1. Let G be a group of Dirichlet characters modulo n, and KG the associated field. Fix a prime number p, and let H1 ⊂ H2 ⊂ G be the groups of χ such that χ(p) = 1 or χ(p) 6= 0 respectively. Then G/H2 ∼= IKG,p ⊂ Gal(KG/Q), and G/H1 ∼= DKG,p (note that these are non-canonical isomorphisms). We are now ready to prove the theorem on factoring Dedekind zeta functions of sub-cyclotomic fiel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012